Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Redox Biol ; 71: 103108, 2024 May.
Article En | MEDLINE | ID: mdl-38457903

High-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer. Here, we report that HPV16 E6E7 promotes cervical cancer cell proliferation by activating the pentose phosphate pathway (PPP). We found that HPV16 E6 activates the PPP primarily by increasing glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. Mechanistically, HPV16 E6 promoted G6PD dimer formation by inhibiting its lactylation. Importantly, we suggest that G6PD K45 was lactylated during G6PD-mediated antioxidant stress. In primary human keratinocytes and an HPV-negative cervical cancer C33A cells line ectopically expressing HPV16 E6, the transduction of G6PD K45A (unable to be lactylated) increased GSH and NADPH levels and, correspondingly, decreasing ROS levels. Conversely, the re-expression of G6PD K45T (mimicking constitutive lactylation) in HPV16-positive SiHa cells line inhibited cell proliferation. In vivo, the inhibition of G6PD enzyme activity with 6-aminonicotinamide (6-An) or the re-expression of G6PD K45T inhibited tumor proliferation. In conclusion, we have revealed a novel mechanism of HPV oncoprotein-mediated malignant transformation. These findings might provide effective strategies for treating cervical and HPV-associated cancers.


Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Cell Line, Tumor , Uterine Cervical Neoplasms/metabolism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Pentose Phosphate Pathway , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Cell Proliferation
2.
J Exp Clin Cancer Res ; 43(1): 36, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38291438

BACKGROUND: Discoidin, CUB, and LCCL domain-containing type I (DCBLD1) is identified as an oncogene involved in multiple regulation of tumor progression, but specific mechanisms remain unclear in cervical cancer. Lactate-mediated lactylation modulates protein function. Whether DCBLD1 can be modified by lactylation and the function of DCBLD1 lactylation are unknown. Therefore, this study aims to investigate the lactylation of DCBLD1 and identify its specific lactylation sites. Herein, we elucidated the mechanism by which lactylation modification stabilizes the DCBLD1 protein. Furthermore, we investigated DCBLD1 overexpression activating pentose phosphate pathway (PPP) to promote the progression of cervical cancer. METHODS: DCBLD1 expression was examined in human cervical cancer cells and adjacent non-tumorous tissues using quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. In vitro and in vivo studies were conducted to investigate the impact of DCBLD1 on the progression of cervical cancer. Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics studies were used to characterize DCBLD1-induced metabolite alterations. Western blot, immunofuorescence and transmission electron microscopy were performed to detect DCBLD1 degradation of G6PD by activating autophagy. Chromatin immunoprecipitation, dual luciferase reporter assay for detecting the mechanism by which lactate increases DCBLD1 transcription. LC-MS/MS was employed to verify specific modification sites within the DCBLD1 protein. RESULTS: We found that lactate increased DCBLD1 expression, activating the PPP to facilitate the proliferation and metastasis of cervical cancer cells. DCBLD1 primarily stimulated PPP by upregulating glucose-6-phosphate dehydrogenase (G6PD) expression and enzyme activity. The mechanism involved the increased enrichment of HIF-1α in the DCBLD1 promoter region, enhancing the DCBLD1 mRNA expression. Additionally, lactate-induced DCBLD1 lactylation stabilized DCBLD1 expression. We identified DCBLD1 as a lactylation substrate, with a predominant lactylation site at K172. DCBLD1 overexpression inhibited G6PD autophagic degradation, activating PPP to promote cervical cancer progression. In vivo, 6-An mediated inhibition of G6PD enzyme activity, inhibiting tumor proliferation. CONCLUSIONS: Our findings revealed a novel post-translational modification type of DCBDL1, emphasizing the significance of lactylation-driven DCBDL1-mediated PPP in promoting the progression of cervical cancer.


Uterine Cervical Neoplasms , Female , Humans , Chromatography, Liquid , Lactates , Pentose Phosphate Pathway , Tandem Mass Spectrometry , Uterine Cervical Neoplasms/genetics
3.
Mol Carcinog ; 63(2): 339-355, 2024 Feb.
Article En | MEDLINE | ID: mdl-37988232

Over 99% of precancerous cervical lesions are associated with human papillomavirus (HPV) infection, with HPV types 16 and 18 (especially type 16) found in over 70% of cervical cancer cases globally. E6, a critical HPV gene, triggers malignant proliferation by degrading p53; however, this mechanism alone cannot fully explain the oncogenic effects of HPV16 E6. Therefore, we aimed to investigate new targets of HPV oncogenic mechanisms. Our results revealed significant changes in nonoxidative pentose phosphate pathway (PPP) metabolites in HPV16-positive cells. However, the role of nonoxidative PPP in HPV-associated cell transformation and tumor development remained unexplored. In this study, we investigated the impact and mechanisms of HPV16 E6 on cervical cancer proliferation using the HPV-negative cervical cancer cell line (C33A). HPV16 E6 was found to promote cervical cancer cell proliferation both in vitro and in vivo, activating the nonoxidative PPP. Transketolase (TKT), a key enzyme in the nonoxidative PPP, is highly expressed in cervical cancer tissues and associated with poor prognosis. HPV16 E6 promotes cervical cancer cell proliferation by upregulating TKT activity through the activation of AKT. In addition, oxythiamine (OT), a TKT inhibitor, hindered tumor growth, with enhanced effects when combined with cisplatin (DDP). In conclusion, HPV16 E6 promotes cervical cancer proliferation by upregulating TKT activity through the activation of AKT. OT demonstrates the potential to inhibit HPV16-positive cervical cancer growth, and when combined with DDP, could further enhance the tumor-suppressive effect of DDP.


Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Proto-Oncogene Proteins c-akt/metabolism , Human papillomavirus 16/metabolism , Transketolase/metabolism , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections/genetics , Oncogene Proteins, Viral/metabolism , Cell Proliferation , Cell Line, Tumor
4.
Front Pharmacol ; 14: 1130747, 2023.
Article En | MEDLINE | ID: mdl-36969840

Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36770365

This paper investigated the micromechanical behavior of different 6H-SiC/Al systems during the uniaxial tensile loading by using molecular dynamics simulations. The results showed that the interface models responded diversely to the tensile stress when the four low-index surfaces of the Al were used as the variables of the joint surfaces. In terms of their stress-strain properties, the SiC(0001)/Al(001) models exhibited the highest tensile strength and the smallest elongation, while the other models produced certain deformations to relieve the excessive strain, thus increasing the elongation. The SiC(0001)/Al(110) models exhibited the largest elongations among all the models. From the aspect of their deformation characteristics, the SiC(0001)/Al(001) model performed almost no plastic deformation and dislocations during the tensile process. The deformation of the SiC(0001)/Al(110) model was dominated by the slip of the 1/6 <112> Shockley partial dislocations, which contributed to the intersecting stacking faults in the model. The SiC(0001)/Al(111) model produced a large number of dislocations under the tensile loading. Dislocation entanglement was also found in the model. Meanwhile, a unique defect structure consisting of three 1/6 <110> stair-rod dislocations and three stacking faults were found in the model. The plastic deformation in the SiC(0001)/Al(112) interface model was restricted by the L-C lock and was carried out along the 1/6 <110> stair-rod dislocations' direction. These results reveal the interfacial micromechanical behaviors of the 6H-SiC/Al composites and demonstrate the complexity of the deformation systems of the interfaces under stress.

6.
Front Pharmacol ; 13: 932154, 2022.
Article En | MEDLINE | ID: mdl-36091812

Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme in the pentose phosphate pathway (PPP). Rapidly proliferating cells require metabolites from PPP to synthesize ribonucleotides and maintain intracellular redox homeostasis. G6PD expression can be abnormally elevated in a variety of cancers. In addition, G6PD may act as a regulator of viral replication and vascular smooth muscle function. Therefore, G6PD-mediated activation of PPP may promote tumor and non-neoplastic disease progression. Recently, studies have identified post-translational modifications (PTMs) as an important mechanism for regulating G6PD function. Here, we provide a comprehensive review of various PTMs (e.g., phosphorylation, acetylation, glycosylation, ubiquitination, and glutarylation), which are identified in the regulation of G6PD structure, expression and enzymatic activity. In addition, we review signaling pathways that regulate G6PD and evaluate the role of oncogenic signals that lead to the reprogramming of PPP in tumor and non-neoplastic diseases as well as summarize the inhibitors that target G6PD.

7.
Biomed Pharmacother ; 154: 113607, 2022 Oct.
Article En | MEDLINE | ID: mdl-36030587

Transketolase (TKT) is an enzyme that is ubiquitously expressed in all living organisms and has been identified as an important regulator of cancer. Recent studies have shown that the TKT family includes the TKT gene and two TKT-like (TKTL) genes; TKTL1 and TKTL2. TKT and TKTL1 have been reported to be involved in the regulation of multiple cancer-related events, such as cancer cell proliferation, metastasis, invasion, epithelial-mesenchymal transition, chemoradiotherapy resistance, and patient survival and prognosis. Therefore, TKT may be an ideal target for cancer treatment. More importantly, the levels of TKTL1 were detected using EDIM technology for the early detection of some malignancies, and TKTL1 was more sensitive and specific than traditional tumor markers. Detecting TKTL1 levels before and after surgery could be used to evaluate the surgery's effect. While targeted TKT suppresses cancer in multiple ways, in some cases, it has detrimental effects on the organism. In this review, we discuss the role of TKT in different tumors and the detailed mechanisms while evaluating its value and limitations in clinical applications. Therefore, this review provides a basis for the clinical application of targeted therapy for TKT in the future, and a strategy for subsequent cancer-related research.


Neoplasms , Transketolase , Biomarkers, Tumor/genetics , Cell Proliferation , Humans , Neoplasms/therapy , Transketolase/genetics
...